
www.manaraa.com

Design of Communication Oriented Kernel Components

International Journal of Mechatronics and Applied Mechanics, 2017, Issue 2 93

DESIGN OF COMMUNICATION ORIENTED KERNEL COMPONENTS

Haifei Zhou

Changzhou College of Information Technology, Changzhou, China
E-mail: zhou_haifeihf@163.com

Abstract: In order to develop a new algorithm used in core component design field, a research of
processor core components based on communication algorithm is designed. The effectiveness of
this kernel component is tested by three research methods. With the rapid growth of user
requirements and application complexity, the mobile communications industry has undergone
enormous changes in the base-band processor for communication algorithms applications. The
performance of processor core functional components is an important factor that restricts the
development of communications. The delay of functional components also affects the
communication time of the base-band processor. Thus, the design and implementation of
components have important theoretical and practical significance. The experimental results show
that the floating-point unit based on communication algorithm is relatively low. Meanwhile, the
design of processor oriented floating-point unit for communication algorithms is relatively simple,
and the implementation conditions of these instructions are optimized from varying degrees. Based
on the above finding, it is concluded that the communication algorithm is of great significance to the
design of the internal core components of various systems.

Keywords: Communication Algorithm; Floating-Point Arithmetic Unit; Core Functional
Components.

1. Introduction

The field of information and communication is not

only a wide range of high-tech areas, but also the

infrastructure of a country. However, in practice,

these technologies are critical to every task that

needs to be accomplished by an increasingly modern

society. Therefore, it has been identified as a national

key technology, and the information and

communication technologies are also of universal

significance [1]. In the United States, because of the

breadth of these technologies, the strong

international technical competition that US

manufacturers face in this technical field will prevail

throughout the entire economy. Therefore, there is

no doubt that maintaining the level of Technological

Development in information technology determines

the economic efficiency of the US manufacturing and

service sectors which are increasing substantially.

Although the proportion of China's ICT industry is

not large, the contribution rate of GDP in China is far

lower than that of developed countries. However, the

growth rate of China's ICT industry shows that it is

one of the fastest speed countries and regions in the

world.

According to research reports released by the

Ministry of Industry and Information Technology,

nowadays, about 0.7% to 0.9% of China's GDP

growth is driven by the information and

communications industry each year [2]. Based on

this environment, in view of the demand of

communication algorithm and the characteristics of

ARMv7 instruction set, an isomorphic multi-core

processor for communication algorithms is

proposed. The main task is to design and implement

the functional components of the processor core

(floating point components). According to the

application of the communication algorithm, the

required communication instructions are classified

and processed, and then the pipelining of the data

path of the instruction is divided.

2. Literature review

In 1951, Booth A D first proposed the Booth coding

method and Wallace's tree compression method. In

2001, Intel implemented an arithmetic unit with a

delay of only 482 ps through the adoption of the 0.18

um CMOS process.

The unit not only uses the technology of insulator

silicon, but also realizes the advanced structure. The

unit also reduces power consumption as it improves

performance, marking a new milestone in the study

of multipliers.

mailto:zhou_haifeihf@163.com

www.manaraa.com

Design of Communication Oriented Kernel Components

International Journal of Mechatronics and Applied Mechanics, 2017, Issue 2 94

 In 2008, Godson No.1 CPU IP core was made by

0.18-micron CMO S process. It has a 64-bit floating

point unit, and the floating-point component is fully

compatible with the MIP S floating-point instruction

set.

The floating-point components and their

associated system software are fully in line with the

ANSI/IEEE754-1985 binary floating- point standard.

From the development of microprocessor at

home and abroad, it is shown that there are still

some differences between our microprocessor

development and foreign countries. Although the

design of floating point units has been applied to a

great number of algorithms and has been developing

toward more and more complex designs, the

floating-point unit designed for communication

algorithms is relatively low.

The processor oriented floating-point unit design

for communication algorithms is relatively simple

[3]. According to the IEEE-754 standard, the IEEE-

754 binary floating- point standard is the most

widely used floating-point number standard at

present. It specifies the floating-point operand

format, rounding mode, precision representation,

and exception handling required to conform to the

standard.

The implementation of these floating- point

operations mainly consists of the following three

phases: pre-operation normalization, mantissa

processing, and post processing. For the 32-bit

floating-point operand format of this processor, the

highest bit symbol is thirty-first bits. The order

segment is twenty-third to thirtieth bits, and the

mantissa segment is zeroth bit to twenty-second bit.

Then, the order and mantissa of the two operands

are compared respectively, and the pre-processing is

done for the floating- point addition.

This stage is completed in the first access section

of the pipeline. In the mantissa processing stage, the

corresponding operations are carried out according

to the corresponding floating-point operations, and

the normalization of symbol bits and the

determination of the order codes are performed.

When a floating-point integer is converted, the

symbol bit remains unchanged.

There is no need to consider symbol bits in

floating-point addition [4]. In the floating-point

subtraction process, if the absolute value of the

subtraction is large, the sign bit is negative.

When floating point multiplication and floating-

point division are performed, if the sign bits of the

two operands are different, the result is negative. If

the two are the same number, the result is positive.

The input of the floating-point prescription must be

positive and the result is positive.

3. Methods

3.1 Floating point addition unit

It is known that floating-point units need to

experience the following operations in the treatment

of floating-point addition. Order subtraction of

operands: First, the absolute value of the larger

order code is used to subtract the absolute value of

the smaller order code to obtain the absolute value

difference ΔE. The two order codes are then

converted to the same value. If it is subtraction, the

size of the two order codes needs to be compared

[5]. After determining the symbol, the absolute value

ΔE of the difference in the order code of the two

operands is obtained. Step shift of order code: When

mantissa is performed, the exponent of the index

with relatively small operands is added to the 4E

accordingly.

The mantissa is shifted right by ΔE bits so that

the order of the two operands becomes the same.

Addition and subtraction of operands: At this stage,

the mantissa is added and removed after the shift of

the step.

Result normalized shift: In order to make the

results of the operation conform to the IEEE

standard, the operation result should be changed to

the standard format, and the mantissa needs to be

normalized and rounded. Meanwhile, the order code

should be adjusted [6].

This process is also known as normalization.

Rounding results: The result of the mantissa is

rounded to the fixed digit after normalization. Result

accuracy judgment: Finally, it is necessary to check

whether the 9 bits sequence of rounding operations

overflow and judge if the result is valid. Flow chart of

floating-point addition: As shown in figure 1, this is

the concrete implementation structure of floating

point addition. As a common operation, the

realization of the main part of the floating-point

adder is the pipelining of the single channel

structure [7].

www.manaraa.com

Design of Communication Oriented Kernel Components

International Journal of Mechatronics and Applied Mechanics, 2017, Issue 2 95

Start

Seeking order∆ E=|E1-E2|

The number of operands of the
order, small order moves right∆ E

Mantissa addition and subtraction

Mantissa judgment

Left or right

Mantissa judgment

Overflow
processing

End

Non-normalized
number

Normalization
number

overflow normal

Figure 1 The hierarchical structure of floating-point addition and subtraction

3.2 Floating-point multiplication unit

The multiplication of floating-point numbers is

simpler than the addition and subtraction of floating

numbers [8]. It can be understood that the

multiplication of floating-point numbers includes

two algorithms, that is, the multiplication of floating

point mantissa (man) and the addition of floating

point order code (exp). The concrete calculation

process is as follows: c=a*b=a(man)*b(man)=2 a

(exp)十b(exp)=c(man)c（exp. The calculation

methods and the states of the order code and

mantissa in floating point multiplication are

explained.

The first step is to multiply the operands from the

floating-point operands. The second step is to add

the exponential part of the floating-point operand

sent, and the result is c (exp, order code). The third

step is to determine the mantissa. If the mantissa is

0, the seventh step is performed.

The index of the result, that is, the order code, is

set to -128. The fourth step and the fifth step

normalize the results obtained. If the result is shifted

to 1 bits and normalized, then skip the eighth step.

The mantissa is shifted to the right, and 1 is added

directly. If the result is shifted to two bits and

normalized, then skip the ninth step. The mantissa is

shifted to the right two bits, and the index is added

two. The tenth step is to extend the mantissa result.

The sixth step to the eleventh step is to

determine the situation of order code. If the rank

code overflows, then it will skip to the fourteenth

step. If the number of floating point mantissa is

greater than 0, then the order code is changed to the

maximum positive number. If the order code is less

than 0, the order code is set to the minimum

negative number. If the order code overflows, the

fifteenth step is executed. Meanwhile, the order code

is changed to -28, and the mantissa is 0. If the rank

code is within range, the sixteenth step is performed

to obtain the final result of floating point

multiplication.

Figure 2 is a flowchart of floating point

arithmetic, which shows the flow of floating-point

multiplication components. The floating-point

multiplication unit is a relatively important part of

the floating-point arithmetic unit. In floating point

multiplication, the symbol bit judgment is handled

by XOR, and the calculation of the code segment is

realized by addition [9]. Mantissa processing is more

complex, and Wallace tree compression is a widely

used program.

In the initialization phase of the floating-point

component operand initialization, the floating

multiplication operation starts with the

simultaneous determination of whether the two

floating-point operands are 0. If the operand is 0, the

floating-point multiplication is completed at this

point.

www.manaraa.com

Design of Communication Oriented Kernel Components

International Journal of Mechatronics and Applied Mechanics, 2017, Issue 2 96

Start

initialization

Two-order code addition

Mantissa normalization, exponential
adjustment

Result order judgment

End

Tail number rounding, again
normalization

Double-digit
multiplication

Figure 2 Arithmetic flow of floating point numbers

3.3 Floating division principle

Floating point division takes 28 cycles in the
processor core for communication algorithms, while
the floating-point evolution requires 27 cycles. When
the instruction is executed, the pipeline is suspended
and the pipelining continues to run after the divide
command is completed. The implementation of these
long period division operations is described below.

Compared with floating-point multiplication and
addition, floating division and square roots do not
have much use. For the communication oriented
processor, the floating-point division unit may
become the bottleneck restricting the improvement
of system performance [10].

The implementation of floating point division is
shown in figure 3, The 23-bit mantissa division
needs a total of 23 cycles, accounted for 91% of the
total time of floating-point division. In figure 3, it
needs to be determined that whether the two
floating-point operands are within the
representation range, that is, whether it is 0 or
infinity. If it is 0 or infinity, the result is set to 0, and
the entire floating-point division is completed in the
initialization phase. If this is not the case, the two
operand is within the scope of the part calculation.
The order numbers and mantissa of two floating
point operands are separated, and the order code
and mantissa are processed separately.

X is 0 or y is ∞

X Y

no

Two-order code subtraction E = Ex-
Ey + 127

Mantissa M -Mx ÷ My

Mantissa normalization, exponential adjustment

Tail number rounding, again normalization

Result order judgment

Set overflow flag

carry outThe result is zero

Yes

no

Yes

Figure 3 Floating-point division implementation process

www.manaraa.com

Design of Communication Oriented Kernel Components

International Journal of Mechatronics and Applied Mechanics, 2017, Issue 2 97

3.4 Float evolution principle

In several operations of floating, float evolution
algorithm is relatively simple. The number of
operation of floating-point evolution is relatively
small, and it is only one. The result of calculation
tends to 1. The calculation of this paper is mainly for
the operation of the mantissa. The operation of the
floating-point order is straightforward, and the data
of the order code is directly divided by 2 in the order
code.

The mantissa involves a true squares operation.
The main process is to determine whether the
floating-point operand is 0, and the floating-point
start is completed when the floating-point operand is
initialized. At this time, if the radicand order number
is odd, then the order code only need to add 1 and
divided by 2, then the offset 63 is added. At this time,
the evolution for the mantissa calculated. If radicand
order number is even, then the process of the
exponent is to divide the order code by 2 and add 65.

At this point, the mantissa is shifted to the left
with one unit and then the mantissa operation is
continued. Finally, the rounding of the mantissa
result is carried out, and the normalized sequence of
code segments is judged over and over. In addition
to dealing with earlier parity check operations on
operands, there is also a correlation of the
subsequent mantissa. In addition to the operation
process, floating evolution unit is similar to the other
addition, subtraction, multiplication process.

4. Results and discussion

After the addition and subtraction method is
completed, it is necessary to judge whether the
result is overflow or not. If it overflows, then the
result is shifted to the right with 1 unit add 1 to the
code. If this is non-normalized, a leading zero logic
decision is required. Then, the number of zeros is
used to move the mantissa to the left, while the order
number is subtracted from the number of zeros. For
the last 28-bit mantissa, the nearest rounding is
selected. After the completion of the mantissa
processing, the sequence code may overflow.

Therefore, the overflow of the order code is
processed and rounded by the nearest round, so that
the overall result conforms to the normalization
standard.

Floating point addition and subtraction parts are
common components. Therefore, the optimization of
its main structure and the flow of its internal
structure can improve the performance of floating-
point addition and subtraction components. The
floating-point adder implements three level
pipelining, each of which has the pipeline register of
the segment. First of all, the temporary data sent by
the superior is stored and sent to the next level of
the device.

The multiplication normalization module
normalizes the 48-bit mantissa of 1-bit, 8-bit and
partial. The result of partial summation is used as
the result of the multiplication of the mantissa of the
floating-point number. The results need to be
normalized. In the floating-point multiplication
pipeline, the final operation is mainly to normalize
the results of the mantissa multiplication, and adjust
the resulting order code, where the floating-point
multiplication operation is over.

Division determines the positive and negative
values of our calculations based on whether the two
signals sign 1 and sign 2 are the same. Finally, the
quotient obtained by the mantissa division is
normalized. According to the processing result, the
rank code segment is adjusted, so that the data
format of the merchant conforms to the
normalization number of the IEEE-754 standard.

Then the rounding process is carried out, and
then the rounding merchant is judged to see if it is
necessary to do the normalization process again. If
the specification is carried out again, it is also
necessary to determine whether the step code
segment obtained by the normalized process has an
overflow. If an overflow occurs, the it is placed at the
bit zone. If there is no overflow, the operation ends
here.

The normalization of the floating-point module is
mainly the processing of the mantissa. There will be
no overflow of the emergence of the prescription. It
is mainly an adjust on the mantissa rounding and
order code after the mantissa normalized process.
Using the start-up item. Synopsys_dc.setup, the DC
synthesis process of each sub module of the floating-
point arithmetic unit is computed, and the result is
shown in table 1.

The comprehensive contrast is shown in figure 4:

Table 1 The Timing, Area and power consumption results after the integration of each module of the floating-

point unit
 Timing (ns) Area (um2) Power (uW)

FADD 14.63 5663.145682 1413.0

FMUL 12 5530.492884 955.8981

FDIV 11 3307.147268 389.9674

FSQRT 9.85 2032.128028 49.2886

www.manaraa.com

Design of Communication Oriented Kernel Components

International Journal of Mechatronics and Applied Mechanics, 2017, Issue 2 98

FADD FMUL FDIV FSQRT

0

1000

2000

3000

4000

5000

6000

A

 timing(ns)

 area(um2)

 power(uW)

Figure 4 Comparison of Timing, Area and Power after synthesis of different modules

5. Conclusions

In the aspect of floating point unit, all the hardware
implemented by floating point unit are discussed in
detail. Although more components are implemented,
floating point data paths are relatively complex.
However, it has little impact on the processing
performance of floating-point instructions according
to instructions. It is able to execute instructions sent
in sequence and quickly handles floating-point
instructions in parallel.

The hardware implementations of these
instructions are optimized from varying degrees. At
the same time, the related work of the project is still
going on. On the basis of the existing achievements, it
is the inevitable development direction to continue
to carry out project engineering. The focus of the
future work is mainly reflected in the following
aspects: The interface between the functional
components of this topic and the other components
inside the microprocessor is being matched. At the
same time, the functional realization of the
microprocessor also requires a good match between
the various functional components. Multi-core
interconnection also needs to solve the routing and
other issues.

References

[1] Wu, Zhenyong, et al. "Nuclear product design

knowledge system based on FMEA method in
new product development." Arabian Journal for
Science and Engineering 39.3 (2014): 2191-2203.
https://doi.org/10.1007/s13369-013-0726-7

[2] Booth, A D, A Signed Binary Multiplication
Technique [J]. Quarterly Journal of and Applied
Mathematics} 1951，4 (2):236-240
https://doi.org/10.1093/qjmam/4.2.236

[3] Bedrij O. Carry Select Adder. IRE Trans. on
Electronic Computers, 1962, 11(6): 340-346.
https://doi.org/10.1109/iretelc.1962.5407919

[4] Nieße, Astrid, Martin Tröschel, and Michael
Sonnenschein. "Designing dependable and
sustainable Smart Grids–How to apply Algorithm
Engineering to distributed control in power
systems." Environmental Modelling & Software
56 (2014): 37-51.
https://doi.org/10.1016/j.envsoft.2013.12.003

[5] Reed, Daniel A, and Jack Dongarra. "Exascale
computing and big data. “Communications of the
ACM 58.7 (2015): 56-68.
https://doi.org/10.1145/2699414

[6] Bui, Duong Minh, et al. "Investigate dynamic and
transient characteristics of microgrid operation
and develop a fast-scalable-adaptable algorithm
for fault protection system." Electric Power
Systems Research 120 (2015): 214-233.

[7] Khajavirad, Aida, Jeremy J. Michalek, and Timothy
W. Simpson. "Solving the joint product platform
selection and product family design problem: An
efficient decomposed multi-objective genetic
algorithm with generalized commonality."
Advances in Product Family and Product
Platform Design. Springer New York, 2014. 271-
294.

[8] Wang, J., Lu, K., Zhang, S., Fan, J., Zhu, Y., & Cheng,
B. (2015). An efficient communication relay
placement algorithm for content‐centric wireless
mesh networks. International Journal of
Communication Systems, 28(2), 262-280.

[9] Li, G., Wimalajeewa, T., & Varshney, P. K. (2015).
Decentralized and collaborative subspace
pursuit: a communication-efficient algorithm for
joint sparsity pattern recovery with sensor
networks. IEEE Transactions on Signal
Processing, 64(3), 556-566.
https://doi.org/10.1109/tsp.2015.2483482.

[10] Fadlullah, Z. M., Takaishi, D., Nishiyama, H., &
Kato, N. (2016). A dynamic trajectory control
algorithm for improving the communication
throughput and delay in uav-aided networks.
IEEE Network, 30(1), 100-105.
https://doi.org/10.1109/mnet.2016.7389838.

www.manaraa.com

© 2017. Notwithstanding the ProQuest Terms and Conditions, you may use
this content in accordance with the associated terms available at https:

